Kirchoff's Laws for Circuit Analysis SPH4C

. .

At any junction point in an electrical circuit,

the _____ the junction equals the the junction.

In any complete path in an electrical circuit,

the ______ equals the _____

The Laws for a Series Circuit

The current is _____ at all points in the circuit:

The total voltage supplied to the circuit is equal to the sum of the voltage drops across the individual loads:

$$V_T = V_1 + V_2 + \dots$$

Given this, from Ohm's Law, V = IR

$$I_T R_T = I_1 R_1 + I_2 R_2 + \dots$$

Since $I_T = I_1 = I_2 = ... = I$,

$$IR_T = IR_1 + IR_2 + \dots$$

Divide all terms by *I* and the equivalent resistance is the _____

 $I_{tot} =$

 $\mathbf{v_1} = \square$

 $\mathbf{v_2} = \square$

V₃=

Example:

The Laws for a Parallel Circuit

At a junction:

$$I_T = I_1 + I_2 = \dots$$

But the total voltage across each of the branches is ______:

Given $I_T = I_1 + I_2 + ...$

From Ohm's Law, V = IR or I = V/R

$$V_T/R_T = V_1/R_1 + V_2/R_2 + \dots$$

Since $V_T = V_1 = V_2 = ... = V$

$$V/R_T = V/R_1 + V/R_2 + \dots$$

Divide all terms by V and the _____ of equivalent resistance is the sum of the of the individual resistances:

Example: Find the equivalent resistance of

Example: Find the equivalent resistant of

What do we do if a circuit has both series and parallel loads? Find the equivalent resistance of the loads in parallel and continue the analysis.

More Practice

Mato	ch each of the configu	rations of resistors on	the left to their equival	ent resistance on the right.
	_ two 12Ω resistors i	n series	Α. 2Ω	
	_ two 12Ω resistors i	n parallel	Β. 4Ω	
	_ a 12Ω resistor and	6Ω resistor in series	C. 6Ω	
	_ a 12Ω resistor and	6Ω resistor in parallel	D. 18Ω	
	$_$ 12 Ω , 6 Ω , and 4 Ω r	esistors in series	Ε. 22Ω	
	$_{-}$ 12 Ω , 6 Ω , and 4 Ω r	esistors in parallel	F. 24Ω	
1.	60 V is supplied to a circuit with a 10 - Ω resistor and a 20 - Ω resistor in parallel. The voltage drop across the resistors is:			
	A. 10 V across the 10 - Ω resistor and 20 V across the 20 - Ω resistor B. 20 V across the 10 - Ω resistor and 40 V across the 20 - Ω resistor C. 30 V across each resistor D. 60 V across each resistor			
2.	In the previous question, if I_{10} is the current across the 10 - Ω resistor and I_{20} is the current across the 20 - Ω resistor, which of the following is true?			
	A. $I_{10} < I_{20}$	B. $I_{10} > I_{20}$	C. $I_{10} = I_{20}$	D. It cannot be determined.
3.	60 V is supplied to a circuit with a 10- Ω resistor and a 20- Ω resistor in series. The voltage drop across the resistors is:			
	A. 10 V across the 10 - Ω resistor and 20 V across the 20 - Ω resistor B. 20 V across the 10 - Ω resistor and 40 V across the 20 - Ω resistor C. 30 V across each resistor D. 60 V across each resistor			
4.	In the previous question, if I_{10} is the current across the $10-\Omega$ resistor and I_{20} is the current across the $20-\Omega$ resistor, which of the following is true?			
	A. $I_{10} < I_{20}$	B. $I_{10} > I_{20}$	C. $I_{10} = I_{20}$	D. It cannot be determined.
5.	Is the total current around the circuit greater in Question 1 or in Question 3?			
	A. Question 1	B. Question 3	C. It's the same.	D. It cannot be determined.